3.503 \(\int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=78 \[ -\frac {2 a (B+i A) \sqrt {\cot (c+d x)}}{d}-\frac {2 \sqrt [4]{-1} a (B+i A) \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a A \cot ^{\frac {3}{2}}(c+d x)}{3 d} \]

[Out]

-2*(-1)^(1/4)*a*(I*A+B)*arctanh((-1)^(3/4)*cot(d*x+c)^(1/2))/d-2/3*a*A*cot(d*x+c)^(3/2)/d-2*a*(I*A+B)*cot(d*x+
c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {3581, 3592, 3528, 3533, 208} \[ -\frac {2 a (B+i A) \sqrt {\cot (c+d x)}}{d}-\frac {2 \sqrt [4]{-1} a (B+i A) \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a A \cot ^{\frac {3}{2}}(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

(-2*(-1)^(1/4)*a*(I*A + B)*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d - (2*a*(I*A + B)*Sqrt[Cot[c + d*x]])/d -
(2*a*A*Cot[c + d*x]^(3/2))/(3*d)

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 3581

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rubi steps

\begin {align*} \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx &=\int \sqrt {\cot (c+d x)} (i a+a \cot (c+d x)) (B+A \cot (c+d x)) \, dx\\ &=-\frac {2 a A \cot ^{\frac {3}{2}}(c+d x)}{3 d}+\int \sqrt {\cot (c+d x)} (-a (A-i B)+a (i A+B) \cot (c+d x)) \, dx\\ &=-\frac {2 a (i A+B) \sqrt {\cot (c+d x)}}{d}-\frac {2 a A \cot ^{\frac {3}{2}}(c+d x)}{3 d}+\int \frac {-a (i A+B)-a (A-i B) \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx\\ &=-\frac {2 a (i A+B) \sqrt {\cot (c+d x)}}{d}-\frac {2 a A \cot ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {\left (2 a^2 (i A+B)^2\right ) \operatorname {Subst}\left (\int \frac {1}{a (i A+B)-a (A-i B) x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}\\ &=-\frac {2 \sqrt [4]{-1} a (i A+B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a (i A+B) \sqrt {\cot (c+d x)}}{d}-\frac {2 a A \cot ^{\frac {3}{2}}(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 3.62, size = 161, normalized size = 2.06 \[ -\frac {2 a e^{-i c} \sin ^2(c+d x) \sqrt {\cot (c+d x)} (\cot (c+d x)+i) (\cos (d x)-i \sin (d x)) (A \cot (c+d x)+B) \left (-3 i (A-i B) \sqrt {i \tan (c+d x)} \tanh ^{-1}\left (\sqrt {\frac {-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )+A \cot (c+d x)+3 i A+3 B\right )}{3 d (A \cos (c+d x)+B \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

(-2*a*Sqrt[Cot[c + d*x]]*(I + Cot[c + d*x])*(B + A*Cot[c + d*x])*(Cos[d*x] - I*Sin[d*x])*Sin[c + d*x]^2*((3*I)
*A + 3*B + A*Cot[c + d*x] - (3*I)*(A - I*B)*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]
]*Sqrt[I*Tan[c + d*x]]))/(3*d*E^(I*c)*(A*Cos[c + d*x] + B*Sin[c + d*x]))

________________________________________________________________________________________

fricas [B]  time = 0.51, size = 380, normalized size = 4.87 \[ -\frac {3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {{\left (-4 i \, A^{2} - 8 \, A B + 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (-\frac {{\left (2 \, {\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {{\left (-4 i \, A^{2} - 8 \, A B + 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) - 3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {{\left (-4 i \, A^{2} - 8 \, A B + 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (-\frac {{\left (2 \, {\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} - {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {{\left (-4 i \, A^{2} - 8 \, A B + 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) - {\left ({\left (-32 i \, A - 24 \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (16 i \, A + 24 \, B\right )} a\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{12 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/12*(3*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt((-4*I*A^2 - 8*A*B + 4*I*B^2)*a^2/d^2)*log(-(2*(A - I*B)*a*e^(2*I*d*x
 + 2*I*c) + (d*e^(2*I*d*x + 2*I*c) - d)*sqrt((-4*I*A^2 - 8*A*B + 4*I*B^2)*a^2/d^2)*sqrt((I*e^(2*I*d*x + 2*I*c)
 + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((I*A + B)*a)) - 3*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt((-4
*I*A^2 - 8*A*B + 4*I*B^2)*a^2/d^2)*log(-(2*(A - I*B)*a*e^(2*I*d*x + 2*I*c) - (d*e^(2*I*d*x + 2*I*c) - d)*sqrt(
(-4*I*A^2 - 8*A*B + 4*I*B^2)*a^2/d^2)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x
 - 2*I*c)/((I*A + B)*a)) - ((-32*I*A - 24*B)*a*e^(2*I*d*x + 2*I*c) + (16*I*A + 24*B)*a)*sqrt((I*e^(2*I*d*x + 2
*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))/(d*e^(2*I*d*x + 2*I*c) - d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )} \cot \left (d x + c\right )^{\frac {5}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)*cot(d*x + c)^(5/2), x)

________________________________________________________________________________________

maple [C]  time = 1.81, size = 1538, normalized size = 19.72 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

-1/3*a/d*(-3*I*A*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*
((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(
1/2))*cos(d*x+c)*sin(d*x+c)-3*I*B*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/s
in(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),
1/2+1/2*I,1/2*2^(1/2))*cos(d*x+c)*sin(d*x+c)+3*I*B*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x
+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/si
n(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c)*sin(d*x+c)-3*I*A*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+c
os(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x
+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*sin(d*x+c)+3*A*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((
-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos
(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*cos(d*x+c)*sin(d*x+c)-3*A*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d
*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(-si
n(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c)*sin(d*x+c)-3*I*B*(-(-sin(d*x+c)-1+cos(d*x+c))
/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi
((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*sin(d*x+c)+3*I*B*(-(-sin(d*x+c)-1+cos(d
*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*Elli
pticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*sin(d*x+c)-3*B*(-(-sin(d*x+c)-1+cos(d*x+c))/
sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(
(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*cos(d*x+c)*sin(d*x+c)+3*A*(-(-sin(d*x+c)
-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1
/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*sin(d*x+c)-3*A*(-(-sin(d*
x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c)
)^(1/2)*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*sin(d*x+c)-3*B*(-(-sin(d*x+c)-1+
cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)
*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*sin(d*x+c)+3*I*A*2^(1/2)*cos
(d*x+c)*sin(d*x+c)+A*2^(1/2)*cos(d*x+c)^2+3*B*2^(1/2)*cos(d*x+c)*sin(d*x+c))*(cos(d*x+c)/sin(d*x+c))^(5/2)*sin
(d*x+c)/cos(d*x+c)^3*2^(1/2)

________________________________________________________________________________________

maxima [B]  time = 1.03, size = 174, normalized size = 2.23 \[ -\frac {3 \, {\left (2 \, \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )\right )} a + \frac {8 \, {\left (3 i \, A + 3 \, B\right )} a}{\sqrt {\tan \left (d x + c\right )}} + \frac {8 \, A a}{\tan \left (d x + c\right )^{\frac {3}{2}}}}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/12*(3*(2*sqrt(2)*(-(I + 1)*A + (I - 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*
(-(I + 1)*A + (I - 1)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt(2)*((I - 1)*A + (I + 1)*
B)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) + sqrt(2)*((I - 1)*A + (I + 1)*B)*log(-sqrt(2)/sqrt(ta
n(d*x + c)) + 1/tan(d*x + c) + 1))*a + 8*(3*I*A + 3*B)*a/sqrt(tan(d*x + c)) + 8*A*a/tan(d*x + c)^(3/2))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^(5/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i),x)

[Out]

int(cot(c + d*x)^(5/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(5/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________